

Thermally stable multi-color emitting Dy³⁺/Eu³⁺ co-doped BaO–ZnO–Li₂O–P₂O₅ glasses for w-LEDs

Kartika Maheshwari^{1,2}, Aman Prasad³, Ravita Pilania⁴, Shaik. Mahamuda⁵, Yasha Tayal^{1,2}, and A. S. Rao^{1,*}

¹ Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India

² ABES Engineering College, Ghaziabad 201009, India

³ Department of Physics and Computer Science, Dayalbagh Educational Institute (DEI), Agra 282002, India

⁴ Department of Physics, Chaudhary Bansilal University, Bhiwani 127021, India

⁵ Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India

Received: 10 July 2023 Accepted: 25 September 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature, 2023

ABSTRACT

Dy³⁺ and Dy³⁺/Eu³⁺ co-doped BaO–ZnO–Li₂O–P₂O₅ (BZLP) glasses have been prepared and studied for their luminescence properties. Dy³⁺doped BZLP glass emits red (⁴F_{9/2}→⁶H_{13/2}), green (⁴F_{9/2}→⁶H_{15/2}) and blue (⁴F_{9/2}→⁶H_{11/2}) emission under 350 nm excitation. Doping of Eu³⁺ tunes the emission from Dy³⁺ in the BZLP glasses. The cool white emission shifts towards the warm white region at 350 nm excitation wavelength owing to the energy transfer between sensitizer Dy³⁺ and activator Eu³⁺ ions. Also, Dy³⁺/Eu³⁺ co-doped BZLP glass gives intense red emission under 393 nm excitation. Dexter's theory was used to ascertain the energy transfer mechanism among the sensitizer Dy³⁺ and activator Eu³⁺ ions via Reisfeld's approximation. The glasses have significant thermal stability and high activation energy. These Dy³⁺/Eu³⁺ co-doped BZLP glasses can be utilized in the fabrication of cool/warm w-LEDs and red emitting devices applications.

1 Introduction

Demand for energy is ever increasing. So, energy saving has become a very important research field being considered significantly [1, 2]. In artificial lighting, white light-emitting diodes (w-LEDs) lighting sources have become particularly important for reducing the world's energy consumption due to advantages like huge amount of energy saving, superior efficacy, compact size, environmental friendliness, etc. related to fluorescent lamps [3–5]. A commercial w-LED is based on a blue LED and YAG: Ce³⁺ phosphor [6, 7]. These w-LEDs suffer from low color rendering index, inappropriate color temperature and halo effect [8]. Glasses doped with transition ions have attracted considerable interest because of their memory and photoconducting properties. They also find potential applications in the development of new tunable solid-state lasers, solar-energy converters and fiber-optic communication devices [9]. To improve these shortcomings, the development of rare earth-activated glasses as a worthy substitute for phosphors is being investigated [8]. Furthermore, glass has many distinctive characteristics such as an

Address correspondence to E-mail: drsrallam@gmail.com

easy cost-effective production process, good thermal and chemical stability along with a high value of rare earth solubility [10, 11].

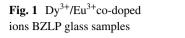
The choice of a good glass host activated with rare earth ions is still a difficult task in assessing optical and lasing characteristics efficiently [12]. Numerous glass hosts like borates, tellurites, silicates, fluorides, phosphates etc. have been prepared and inspected for innumerable optical features. Phosphate is one of the appropriate glass hosts having distinguished properties like low melting temperature, highly thermally stability, high rare earth (RE) solubility, low dispersion and clear visibility in the wide-ranging spectrum [13, 14]. Phosphate glasses have found usage in the area of photonics but their hygroscopic nature and poor chemical stability limit their utility [15]. So, network modifiers (BaO, Li₂O) and an intermediate compound (ZnO) are added to the host thereby enhancing chemical & thermal stability and reducing thermal expansions. Additionally, ZnO helps reduce the hygroscopic affinity of the glass and increases rare earth ion solubility in the glass matrix. RE doped phosphate glasses improve the luminescent characteristics of materials in various fields such as optoelectronic devices and lasers due to the emission from the ultraviolet region to the infra-red region [16–21].

Trivalent lanthanide ions are considered the most appropriate activator in many crystalline or amorphous inorganic host lattices. Among the lanthanides, white light via co-doping of appropriate rare earth ions that can emit in the red region. Various RE ions such as Dy^{3+}/Ce^{3+} , Dy^{3+}/Eu^{3+} , Dy^{3+}/Tm^{3+} etc. are being used to obtain proper artificial white light [24–26]. We have introduced red emitting Eu^{3+} ion as a co-activator in Dy^{3+} doped glass compositions so as to improve the CCT and generate warm white light. This was undertaken due to the overlapping of Dy^{3+} emission profile with Eu^{3+} ions excitation profile. This fact shows that some energy transfer can occur between both ions in the proposed phosphate glass composition [27].

In the current investigation, Dy³⁺/Eu³⁺ activated BZLP glasses have been prepared to achieve the optimal energy transfer with thermal stability for warm white light generation and usage in other solid-state artificial lighting devices. Structural analysis along with the study of optical properties of the BZLP glasses has been undertaken in this research work.

2 Materials and methods

2.1 Preparation of Dy^{3+} and Dy^{3+}/Eu^{3+} induced BZLP glasses


Transparent RE ions doped glasses have been prepared via melt quenching routes with the help of highly pure reagents using the following chemical equations:

$$(15 - x)$$
 BaO – 15ZnO – 10Li₂O – 60P₂O₅ : x Dy₂O₃(x varies from 0.1 to 2.0 mol% concentration of Dy³⁺ions)

$$(15 - y)$$
 BaO – 15ZnO – 10Li₂O – 60P₂O₅ : yEu₂O₃(y = 0.1 mol% concentration of Eu³⁺ions)

the trivalent Dy^{3+} is an important ion, which emits in the blue, yellow and red regions under numerous excitations. Through combination of these color, Dy^{3+} ion doped luminescent material is able to produce white lights. The white light is tuned by a proper yellow to blue ratio that can be altered by varying Dy^{3+} ions doping concentration [22, 23]. The bluish white light emitted from the Dy^{3+} ions doped glasses lacks a red constituent and also has high co-related color temperature (CCT). This cool bluish light can be tuned to warm Besides the aforementioned glasses, a series of Dy_2O_3 and Eu_2O_3 co-doped glasses was also prepared:

(15-*x*–*y*) BaO-15ZnO-10Li₂O-60P₂O₅:*x*Dy₂O₃: *y*Eu₂O₃ (*x* = 1.5 mol% concentration of Dy³⁺ ions and *y* = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 mol% of Eu³⁺ ions). The prepared Dy³⁺/Eu³⁺ co doped glass samples of size 3 cm and uniform thickness 2 mm were named as BZLP:DE0, BZLP:DE1, BZLP:DE2, BZLP:DE3, BZLP:DE4 and BZLP:DE5 and shown in the Fig. 1.

Appropriate stoichiometric amounts of $BaCO_{3}$, ZnO, Li_2CO_{3} , $NH_4H_2PO_4$ and Dy_2O_3 were taken and ground for 1 h and the blended mixture was further heated in a furnace for melting at 1200 °C. After a while, the powder mixture turned into a liquid. This liquid mix was then immediately quenched on a preheated brass plate to give the final glass product of uniform thickness. Further, the prepared glasses were annealed at 350 °C for 1 h to remove thermal shock and air bubbles strain. These glasses were polished with emery paper with 40 grit and also used red oxide powder so that the smoothness of the glass does not be affected.

2.2 Instrumentation

XRD data of Dy^{3+}/Eu^{3+} co-doped BZLP glass was recorded using a D8 advance Bruker X-ray diffractometer in the $10^{\circ} \le 2\theta \le 80^{\circ}$ range. The absorption profile was recorded via JASCO V 670 spectrophotometer. Photoluminescence (PL) studies were carried out in a JASCO 8300FL Spectro fluorophotometer at room temperature. The decay profile codoped BZLP glass has been characterized using an Edinburgh FLS980 spectrophotometer. Temperaturedependent PL (TD-PL) profiles were recorded using ocean optics spectrophotometer (FLAME- S-XR1-ES).

3 Results and discussions

3.1 Structural analysis

The amorphous nature of the prepared Dy^{3+}/Eu^{3+} co-doped BZLP glass has been analysed using the recorded XRD profile as shown in Fig. 2. The profile contains a wide band with the nonexistence of any

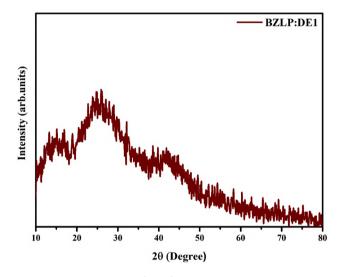


Fig. 2 XRD pattern of Dy³⁺/Eu³⁺co-doped BZLP glass

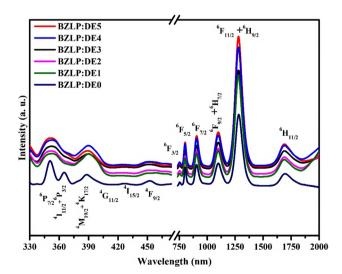


Fig. 3 Absorption profile of Dy^{3+} doped and Dy^{3+}/Eu^{3+} co-doped BZLP glasses

sharp peaks, confirming the prepared Dy³⁺/Eu³⁺ codoped BZLP glasses having glassy and amorphous in nature.

3.2 Absorption characteristics

The absorption profiles of Dy^{3+} doped BZLP glasses in 330–2000 nm range have been shown in Fig. 3. Peaks pertaining to transitions from ${}^{6}H_{15/2}$ state

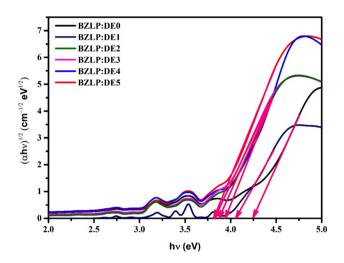


Fig. 4 Indirect bandgap plot of Dy^{3+} doped and Dy^{3+}/Eu^{3+} co-doped BZLP glasses

to many higher energy levels at ${}^{6}P_{7/2}$, ${}^{4}I_{11/2}$ + ${}^{6}P_{3/2}$, ${}^{4}M_{19/2}$ + ${}^{4}K_{17/2}$, ${}^{4}G_{11/2}$, ${}^{4}I_{15/2}$, ${}^{4}F_{9/2}$, ${}^{6}F_{3/2}$, ${}^{6}F_{5/2}$, ${}^{6}F_{7/2}$, ${}^{6}F_{9/2}$ + ${}^{6}H_{7/2}$, ${}^{6}F_{11/2}$ + ${}^{6}H_{9/2}$ and ${}^{6}H_{11/2}$ of Dy³⁺ ions [20]. The absorption peak due to ${}^{6}H_{15/2}$ to ${}^{6}F_{11/2}$ + ${}^{6}H_{9/2}$ transition is most intense and follows $|\Delta S| = 0$, $|\Delta L| \le 2$ and $|\Delta J| \le 2$ [28].

The absorption characteristics of Dy^{3+}/Eu^{3+} codoped BZLP glasses were also illustrated in Fig. 3. The bands are mainly due to Dy ³⁺ ions and broaden in the UV region, when co-doped with Eu ³⁺ ions as depicted in Fig. 3. The absorption peaks observed for Dy ³⁺ doped BZLP glass in infrared region were in good agreement with the literature [6, 7, 15].

On the basis of absorption characteristics, optical band gap of all prepared glasses was evaluated via Davis and Mott relation as follows [29]:

$$\alpha h\nu = B \Big(h\nu - E_{opt} \Big)^n$$

Here E_{opt} is indirect energy bandgap, α represents the absorption coefficient, B is the band trailing parameters and hv is incident photon energy. The value of nis 2 for indirect allowed transitions [30]. As per the plot presented in Fig. 4, estimated indirect E_{opt} values are 4.21, 4.04, 3.96, 3.91, 3.88 and 3.86 eV for BZLP:DE0, BZLP:DE1, BZLP:DE2, BZLP:DE3, BZLP:DE4 and BZLP:DE5 glasses, respectively.

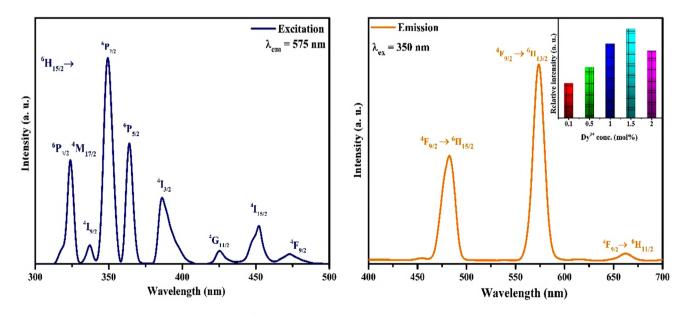


Fig. 5 Excitation and emission spectrum of Dy^{3+} doped BZLP glass at $\lambda_{em} = 575$ and $\lambda_{ex} = 350$ nm respectively. The inset plot represents the change in emission intensity with Dy^{3+} ions concentration in BZLP glasses

🙆 Springer

3.3 PL study of singly doped Dy³⁺ ions in BZLP glasses

PL characteristics of 0.1 mol% Dy³⁺ doped BZLP glass was presented in Fig. 5. PL excitation spectrum with monitoring the 575 nm emission wavelength contains various peaks in 300–500 nm range. The excitation peaks were observed at 322, 337, 350, 362, 386, 425, 449 and 473 nm corresponding transitions are mentioned in Fig. 5. Amongst the excitation peaks, the dominant peak at 350 nm (${}^{6}\text{H}_{15/2} \rightarrow {}^{6}\text{P}_{7/2}$) transition was chosen as the excitation wavelength to record the emission characteristics [31, 32].

Figure 5 shows the emission spectrum of 0.1 mol% Dy³⁺ doped BZLP glass under the excitation of 350 nm wavelength. The emission spectrum exhibits the blue, yellow and red peaks at 483 nm (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$), 575 nm $({}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2})$ and 661 nm $({}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2})$. The nature of transitions ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ is magnetic dipole and forced electric dipole respectively. The ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ transition, on the other hand, is both magnetic as well as in forced electric in nature [33]. The $({}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2})$ transition is the leading the all-emission peaks. Further, the emission intensity can depend on the doping concentrations. Hence the doping concentration of Dy³⁺ ion was optimized by preparing a series of glass with 0.1 to 2.0 mol% of Dv³⁺ ions. The inset shows the variation in emission intensity with increasing Dy³⁺ concentration. The emission intensity upsurges till 1.5 mol% of Dy³⁺ and then declines [34]. This was due to mutual interactions

 $\lambda_{cm} = 612 \text{ nm}$ _ = 393 nm ${}^{7}\mathbf{F}_{a}$ →⁵L ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ Intensity (a.u.) 300 350 400 450 500 550 600 650 700 750 Wavelength (nm)

Fig. 6 Excitation and emission spectrum of 1.0 mol% Eu^{3+} doped BZLP glass at $\lambda_{em} = 612$ and $\lambda_{ex} = 393$ nm respectively and resonant energy transfer among the doping ions in BZLP i.e., concentration quenching effect [34]. On the basis of the emission profile, the 1.5 mol% is the optimized concentration of Dy³⁺ ions in BZLP glasses.

3.4 PL study of singly doped Eu³⁺ ions in BZLP glasses

Figure 6 shows the luminescence profile of Eu³⁺ doped BZLP glass at $\lambda_{em} = 612$ and $\lambda_{ex} = 393$ nm respectively. The excitation profile shows a number of peaks in 300–500 nm range owing to the $({}^{7}F_{0} \rightarrow {}^{5}H_{6})$, $({}^{7}F_{0} \rightarrow {}^{5}D_{4}), ({}^{7}F_{0} \rightarrow {}^{5}L_{7}), ({}^{7}F_{0} \rightarrow {}^{5}L_{6}), ({}^{7}F_{0} \rightarrow {}^{5}D_{3}) \text{ and}$ $({}^{7}F_{0} \rightarrow {}^{5}D_{2})$, Eu³⁺ ions transitions. Amongst the several excitations, the dominant peak was observed at 393 nm corresponding to ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ transition. Emission profile is illustrated in 500-750 nm range at λ_{ex} = 393 nm in the same figure. The emission profile shows numerous sharp peaks attributed to $({}^{5}D_{0} \rightarrow {}^{7}F_{0})$, $({}^{5}D_{0} \rightarrow {}^{7}F_{1}), ({}^{5}D_{0} \rightarrow {}^{7}F_{2}), ({}^{5}D_{0} \rightarrow {}^{7}F_{3}), \text{ and } ({}^{5}D_{0} \rightarrow {}^{7}F_{4})$ Eu³⁺ ions transitions. The transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ of Eu³⁺ ions can be characterised as magnetic and forced electric dipole in nature, respectively. The dominant emission peak was situated at 612 nm under 393 nm excitation [35].

3.5 PL study of co-doped BZLP:Dy³⁺/Eu³⁺ glasses

The excitation spectra of Dy^{3+}/Eu^{3+} co-doped BZLP glass (BZLP:DE1) were recorded by monitoring the emission wavelengths at 575 and 612 nm as

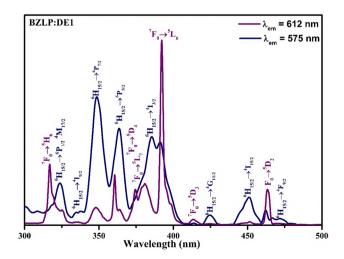


Fig. 7 Excitation spectra of BZLP:DE1 glass at λ_{em} = 575 and 612 nm

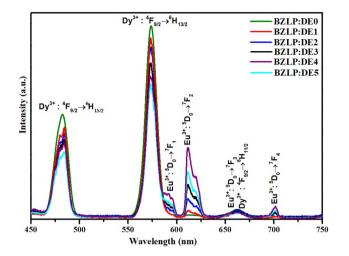


Fig. 8 Emission spectra of Dy^{3+}/Eu^{3+} co-doped BZLP glasses at $\lambda_{ex} = 350 \text{ nm}$

illustrated in Fig. 7. The excitation profile by monitoring the emission wavelength at 575 nm exhibits a number of excitation peaks in 300–500 nm range, owing to the transition from ${}^{6}\text{H}_{15/2}$ to ${}^{6}\text{P}_{3/2}$, ${}^{4}\text{M}_{17/2}$, ${}^{4}I_{9/2}$, ${}^{6}P_{7/2}$, ${}^{6}P_{5/2}$, ${}^{4}I_{3/2}$, ${}^{4}G_{11/2}$, ${}^{4}I_{15/2}$ and ${}^{4}F_{9/2}$ of Dy³⁺ ions. Also, some additional peaks were detected at 393 and 465 due to the ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ and ${}^{5}D_{2}$ transitions of Eu³⁺ ions. The occurrence of excitation peaks related to Eu³⁺ ions while monitoring the Dy³⁺ ions emission peaks suggested that the Dy³⁺ plays an important role in energy transfer to the Eu³⁺ ion. The excitation profile while monitoring 612 nm emission exhibits excitation peaks due to the ${}^{7}F_{0} \rightarrow {}^{5}H_{6'} {}^{5}D_{4'}$ ${}^{5}L_{7}$, ${}^{5}L_{6}$, ${}^{5}D_{3}$ and ${}^{5}D_{2}$, transitions of Eu³⁺ ions. The overlap of the excitation spectra of BZLP: DE1 confirms the ability of the glass to be excited by n-UV radiation.

 Dy^{3+}/Eu^{3+} co-doped glasses were excited by 350 nm wavelength and the corresponding emission spectra are shown in Fig. 8. The emission profile changes with increasing content of Eu^{3+} ions in the glasses. The peak intensity related to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{6}H_{13/2}$ and ${}^{6}H_{11/2}$ transitions of Dy^{3+} reduces with increasing Eu^{3+} ions content whereas new peaks attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{3}$, and ${}^{7}F_{4}$ transitions of Eu^{3+} ions are observed in the spectra. The reduction in Dy^{3+} emission peak intensity and simultaneous enrichment in the Eu^{3+} ions emission intensity signifies energy transfer between sensitizer Dy^{3+} and activator Eu^{3+} ions [36].

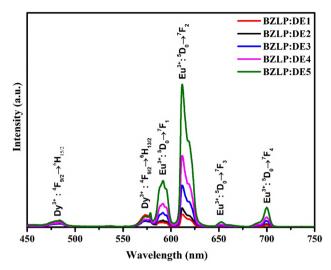
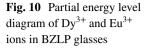
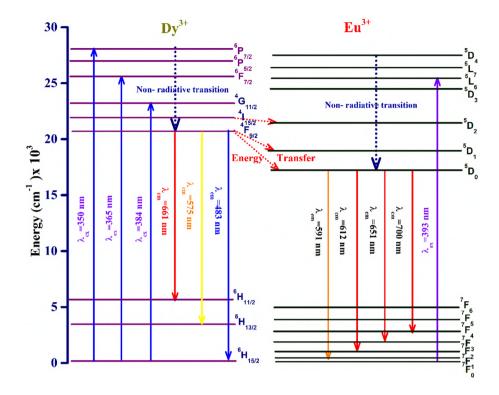




Fig. 9 Emission spectra of Dy^{3+}/Eu^{3+} co-doped BZLP glasses at $\lambda_{ex} = 393$ nm

Furthermore, the PL spectra of Dy³⁺/Eu³⁺ co-doped BZLP glasses were recorded under 393 nm excitation as revealed in Fig. 9. Numerous emission peaks situated at 591(${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), 612 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$), 651(${}^{5}D_{0} \rightarrow {}^{7}F_{3}$) and 700 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$) nm of Eu $^{3+}$ ion can be seen. Apart from this, two peaks were also detected at 483 and 575 nm corresponding to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and ${}^{6}H_{13/2}$ transitions of Dy³⁺ ions, respectively. Peaks corresponding to Eu³⁺ ion transitions are more intense than those of Dy³⁺ ion transitions. The intensity of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}, {}^{7}F_{2}, {}^{7}F_{3}, {}^{7}F_{4}$ transitions enhances with increase in Eu³⁺ ions, whereas minute changes are observed in emission related with to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ⁶H_{13/2} transitions of Dy³⁺ ions. Thus, Dy³⁺ ions sensitize Eu³⁺ ions as is evident from PL studies and transfer a part of absorbed energy which is converted to visible emission [37, 38].

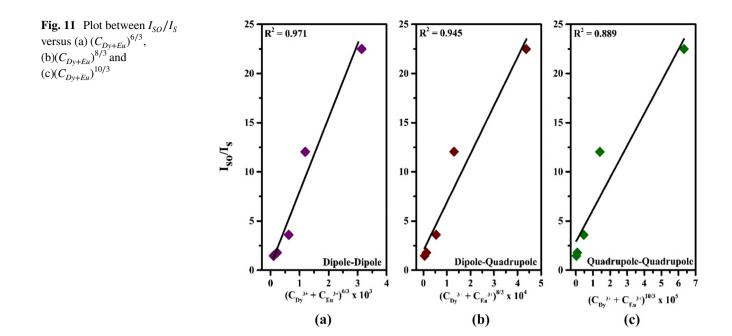
A partial energy level diagram of Dy³⁺ and Eu³⁺ ions is shown in Fig. 10 to realize the sensitizer and activator ions energy transfer process. Dy³⁺ and Eu³⁺ ions get excited to upper energy levels by n-UV radiation and then fall to lower energy states via nonradiative decay. Subsequently, the Dy³⁺ ions give emissions at 483, 575 and 661 nm ascribed to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, $6H_{13/2}$ and ${}^{6}H_{11/2}$ transitions whereas Eu³⁺ emits owing to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{7}F_{2}$, ${}^{7}F_{3}$, and ${}^{7}F_{4}$ transitions. Some energy is also shifted from Dy³⁺ to Eu³⁺ ions along with the individual emissions. The energy shifting takes place as the energy level ${}^{4}I_{15/2}$ of Dy³⁺ ion is above the ${}^{5}D_{2}$, ${}^{5}D_{1}$ and ${}^{5}D_{0}$ energy levels of Eu³⁺

ion. Also, the ${}^{4}F_{9/2}$ level of Dy³⁺ lies above the ${}^{5}D_{1}$ and ${}^{5}D_{0}$ levels of Eu³⁺ ions. Owing to the less energy difference between these levels, a part of absorbed energy from Dy³⁺ ions migrate to the Eu³⁺ ions in BZLP glasses as seen in PL spectra.

Mainly multipolar exchange interaction type of energy transfer takes places in rare earth doped glasses, which can be categorized into three ways of interaction i.e., quadrupole–quadrupole, dipole–dipole and dipole-quadrupole. The types of energy transfer among the nearest doped ions were analysed via Dexter's multipolar exchange interaction expression with Reisfeld's approximation as follows [39]:

$$\frac{\eta_0}{\eta} \propto C^{n/3} \tag{1}$$

 η_0 and η symbolize the radiant quantum efficiency of sensitizer Dy³⁺ ions in the absence of an activator and quantum efficiency of sensitizer Dy³⁺ ions with Eu³⁺ (activator), respectively. *C* signifies the sum of concentration of dopant ions. The nature of multipolar exchange interaction is indicated by n in the equation above. Depending whether the interaction is dipole–dipole, dipole-quadrupole and quadrupole–quadrupole, the value of n can be 6, 8, or 10 respectively. The radiation intensities are linked to the ratio between η_0 and η as shown below [40]:


$$\frac{I_{SO}}{I_s} \propto C^{n/3} \tag{2}$$

In the above equation, I_{SO} signifies emission intensity of Dy³⁺ doped glass and I_S represent the emission intensity of Dy³⁺/Eu³⁺co-doped glass. The graphs of I_{SO}/I_S versus $C^{n/3}$ taking n = 6, 8, 10 can be seen in Fig. 11. The non-radiative, dipole-to-dipole character of the interaction and energy transfer between the rare earth ions was confirmed by the best linear fit, which was found for n = 6.

3.6 Lifetime and energy transfer analysis

The lifetime curves of Dy³⁺/ Eu³⁺co-doped BZLP glasses were recorded at $\lambda_{em} = 572$ nm under excitation $\lambda_{ex} = 350$ nm and shown in Fig. 12. The lifetime curves are exponential in nature and can be fitted with bi-exponential function as given below [41]:

$$I = I_0 + A_1 exp\left(-\frac{t}{\tau_1}\right) + A_2 exp\left(-\frac{t}{\tau_2}\right)$$
(3)

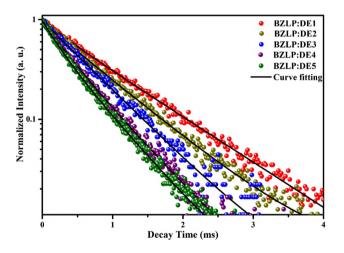
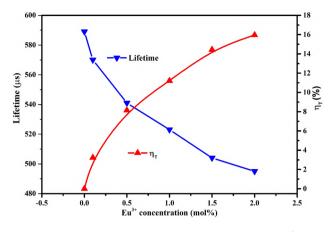


Fig. 12 Decay curves of Dy³⁺/Eu³⁺co-doped BZLP glasses at $\lambda_{ex} = 350 \& \lambda_{em} = 575 \text{ nm}$


Here *I* and I_0 denote the emission intensity at any instant *t* and t = 0, respectively and τ_1 and τ_2 denote the slow and fast decay components. A_1 and A_2 denote the fitting constants. On the basis of these parameters, the average lifetime (τ_{avg}) were calculated using the formula as mentioned [42]:

$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{4}$$

The evaluated τ_{avg} values for the prepared Dy³⁺/ Eu^{3+} co-doped BZLP glasses are tabulated in Table 1. The occurrence of energy transfer between the dopant ions is confirmed by the decrease in the τ_{avo} values with increasing Eu^{3+} concentration. η_T is the energy transfer efficiency probability given as [43]:

$$\eta_T = 1 - \frac{\tau_d}{\tau_{d0}} \tag{5}$$

Table 1 CIE colorcoordinates (x , y), CCT (K),lifetime, Dy ³⁺ to Eu ³⁺ energytransfer efficiency of preparedco-doped BZLP glasses at	Sample name	CIE coordinates (x, y)	CCT (K)	Decay time (µs)	Energy transfer efficiency $\eta_T(\%)$
	BZLP:DE0	(0.372, 0.424)	4474	589	-
	BZLP:DE1	(0.383, 0.410)	4125	571	3.05
$\lambda_{ex} = 350$ and $\lambda_{em} = 575$ nm	BZLP:DE2	(0.376, 0.416)	4340	543	7.80
	BZLP:DE3	(0.378, 0.405)	4185	524	11.03
	BZLP:DE4	(0.383, 0.394)	3432	504	14.43
	BZLP:DE5	(0.402, 0.391)	3180	496	15.78

Fig. 13 Variation in lifetime and ET efficiency with Eu³⁺ ions concentration in Dy³⁺/Eu³⁺co-doped BZLP glasses

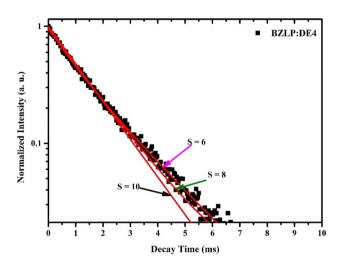


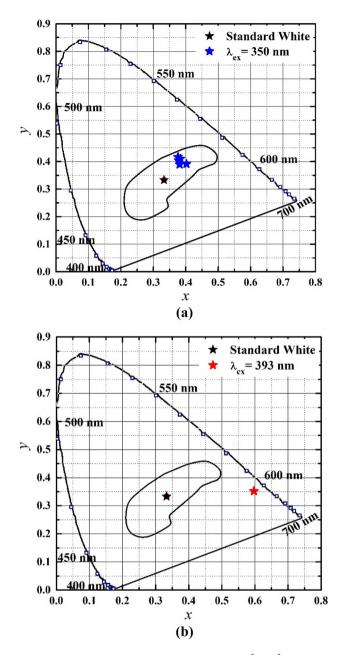
Fig. 14 I-H fitted decay curves of BZLP:DE4 glass

Here τ_d and τ_{d0} denote the lifetime of the co-doped and singly doped glasses respectively. Table 1 provides a tabulation of the energy transfer probability (η_T) parameter as well. It can be seen that when concentration of Eu³⁺ ions increases, η_T increases as well. The likelihood of energy transfer seems to increase by five times for an increase in Eu³⁺ concentration from 0.0 mol% to 5.0 mol%. Figure 13 demonstrates how lifetime and energy transfer efficiency in co-doped BZLP glasses change when the Eu³⁺ ion concentration in the glass lattice increases.

Furthermore, on the basis of PL decay curve of BZLP:DE4, the type of energy transfer interaction has

been analysed using Inokuti- Hirayama (I-H) model. As per the I-H model, the equation which relates the type of interaction as follows [44]:

$$I_t = I_0 \exp\left\{\frac{-t}{\tau_o} - Q\left(\frac{t}{\tau_o}\right)^{\frac{3}{s}}\right\}$$
(6)


Here I_t is intensity of luminescence at time t, τ_o signifies the decay time, Q signifies the energy transfer parameter and the value of S designates the type of interaction having values 10, 8 and 6 for quadrupole–quadrupole, dipole-quadrupole and dipole–dipole interaction, respectively [44]. The best fit is observed for S = 6 value as presented in Fig. 14. Thus, the I-H models also confirm the occurrence of dipole–dipole interaction among the sensitizer and activator ions in BZLP glasses.

3.7 Colorimetric analysis

Table 1 shows the CIE coordinates of the as prepared glasses. The color coordinates depend upon the incident excitation wavelength and also on the amount of dopants in the glass. Varying Eu³⁺ concentration leads to the modulation of luminescence hues and is helpful for a variety of applications. CIE chromaticity coordinates of Dy³⁺/Eu³⁺co-doped BZLP glasses at $\lambda_{ex} = 350$ nm correspond to the white region as seen in Fig. 15a. The coordinates for BZLP:DE5 glass at $\lambda_{ex} = 393$ nm were also plotted on the CIE diagram and shown in Fig. 15b. CIE color coordinates were situated in red region, under the $\lambda_{ex} = 393$ nm, which shows the prepared glasses can be a potential red constituent for many photonic devices.

Correlated colour temperature (CCT) is also a critical parameter which allows the researchers to determine the specific temperatures for which the CIE coordinates fall closer to the whole light region. It can be calculated using the McCamy relation [45]. The CCT values for Dy^{3+}/Eu^{3+} doped BZLP glass have been presented in Table 1 as well. The values signify emission tuning from cool to warm white light regions with the addition of Eu³⁺ ions. According to the aforementioned findings, CIE colour co-ordinates and CCT values may be effectively modified by the amount of doped RE ions BZLP glasses. In turn, this demonstrates that asprepared Dy^{3+}/Eu^{3+} co-doped BZLP glasses are appropriate for n-UV pumped white illumination systems.

Fig. 15 CIE chromaticity coordinates of **a** Dy³⁺/Eu³⁺co-doped BZLP glasses at $\lambda_{ex} = 350$ nm. **b** BZLP:DE5 glass at $\lambda_{ex} = 393$ nm

3.8 Temperature dependent PL study

PL spectra are affected by variation of temperature. Hence, the temperature-dependent emission characteristics for Dy³⁺/Eu³⁺ co-doped BZLP glass were recorded at λ_{ex} = 350 & 393 nm and shown in Fig. 16a and b. With increase in temperature from 25 to 200 °C, the PL intensity continuously decreases as can be seen in the figure. The intensity is 93.40% of maximum at 150 °C and 91.25% of maximum at 200 °C, which shows that the Dy³⁺/Eu³⁺ co-doped BZLP glass has very good thermal stability. Furthermore, the activation energy (ΔE_a) can be accessed by using the Arrhenius equation as follows [46]:

$$I_T = \frac{I_0}{1 + Cexp\left(-\frac{\Delta E}{K_B T}\right)}$$

Here I_0 and I_T indicate the emission intensity at 25 °C and at a particular temperature T respectively whereas $CandK_B$ signify an arbitrary constant and Boltzmann constant respectively. On the basis of temperature-dependent emission characteristics, the $ln((I_0/I_T)-1)$ versus $1/K_BT$ plots were analysed and fitted with linear equation for the both emission characteristics. The plots are shown in Fig. 17a and b. The activation energy for Dy³⁺/Eu³⁺ co-doped BZLP glass was assessed to be 0.242 and 0.241 eV for emission spectra under $\lambda_{ex} = 350$ & 393 nm respectively which have relatively higher activation energy (0.196 eV) of reported glass in literature [3]. Thus, temperature dependent emission characteristics show that the Dy³⁺/Eu³⁺ co-doped BZLP glass can produce thermally stable luminescence and can be used as red emitting component in w-LEDs and other luminescent devices.

4 Conclusions

Transparent Dy³⁺/Eu³⁺ co-doped BZLP glasses were effectively synthesized via melt quench technique. The structural and luminous properties were examined to gain understanding of their applicability in photonic devices. The single Dy³⁺ doped BZLP glasses emits blue, yellow and red emission under n-UV excitation pertaining to the ${}^4F_{9/2} \,{\to}\, {}^6H_{15/2},\, {}^6H_{13/2}$ and ${}^6H_{11/2}$ transitions respectively. Dy³⁺/Eu³⁺ co-doped BZLP glasses give emission in visible region owing ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2'}$ ${}^{6}\text{H}_{13/2}$ and ${}^{6}\text{H}_{11/2}$ transitions of Dy ${}^{3+}$ along with ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$, ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$, ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{3}$ and ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{4}$ transitions of Eu³⁺ ion under 350 nm and 393 nm.With an increase in Eu³⁺ ion concentration, energy transfer takes place from Dy³⁺ ions to Eu³⁺ ions resulting in the decrement of intensity of PL peaks of Dy³⁺ ions. The cool white emission shifts towards the warm white emission under 350 nm and 393 nm excitation for the co-doped glasses as can be seen in the CIE diagram.

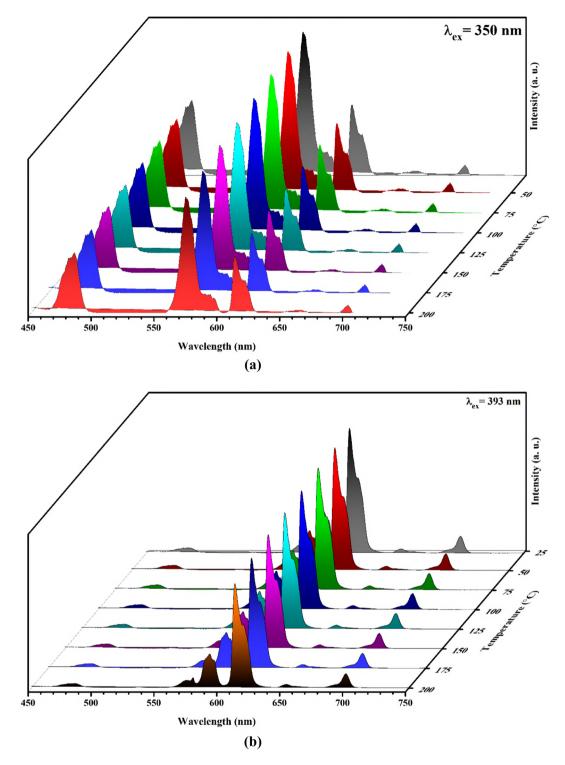
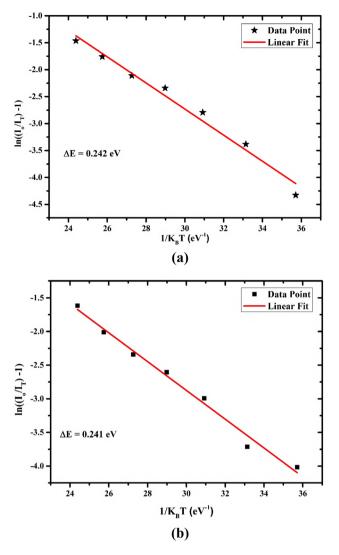



Fig. 16 Temperature dependent emission spectra of a BZLP:DE4 glass at $\lambda_{ex} = 350$ nm. b BZLP:DE5 glass at $\lambda_{ex} = 393$ nm

The dipole–dipole type of energy transfer sensitizer and activator ions in the BZLP glasses was verified using Dexter's ET formula, Reisfeld's approximation and I–H model theories. The PL lifetimes for the co-doped glasses reduced whereas the energy transfer efficiency η_T enflamed with upsurge in Eu³⁺ ions concentration from y = 0.0 to 5.0 mol%. The temperature-dependent PL spectra under 350 nm and 393 nm

Fig. 17 $\ln[(I_o/I_T)-1]$ versus $1/K_BT$ plot for **a** BZLP:DE4 glass at $\lambda_{ex} = 350$ nm. **b** BZLP:DE5 glass at $\lambda_{ex} = 393$ nm

excitation were thermally stable with values of activation energy being 0.242 eV and 0.241 eV, respectively. The aforementioned results for Dy³⁺/Eu³⁺ co-doped BZLP glasses show that these glasses can work is a red light emitting component in w-LEDs and for warm white light generation in various luminescent applications.

Author contributions

All authors contributed to the study, conception and design of the manuscript. The author credits are as follows: KM: Data collection, methodology, synthesis, result analysis, writing. AP: Result analysis, review, writing. RP: Result analysis, writing. SM: Result analysis. YT: Data collection, synthesis. ASR: Methodology, review, editing, supervision.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

Declarations

Competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal rights The authors declare that no animal or animal data was used in any study or experiment mentioned in this manuscript.

References

- Y. Yan, Z. Chen, X. Jia, S. Li, Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb³⁺-doped silicate, tellurite, germanate, and phosphate glasses. Opt. Mater. **75**, 465–470 (2018). https://doi.org/ 10.1016/j.optmat.2017.10.008
- L. He, D. Wang, M. Chen, R. Liu, Z. Su, C. Li, H. Lin, S. Li, Y. Zhou, L. Liu, F. Zeng, Luminescence properties of Tb³⁺/Eu³⁺ co-doped glass based on GSBR system. Opt. Mater. **122**, 111754 (2021). https://doi.org/10.1016/j.optmat.2021.111754
- A.S. Rao, Effective energy transfer from Dy³⁺ to Tb³⁺ ions in thermally stable KZABS glasses for intense green emitting device applications. J. Lumin. 239, 118325 (2021). https://doi.org/10.1016/j.jlumin.2021.118325

- C. Zhang, H. Liang, S. Zhang, C. Liu, D. Hou, L. Zhou, G. Zhang, J. Shi, Efficient Sensitization of Eu³⁺ Emission by Tb³⁺ in Ba₃La(PO₄)₃ under VUV-UV excitation: energy transfer and tunable emission. J. Phys. Chem. C 116, 15932–15937 (2012). https://doi.org/10.1021/jp304 717z
- N. Baig, R.S. Yadav, N.S. Dhoble, V.L. Barai, S.J. Dhoble, Near UV excited multi-color photoluminescence in RE³⁺ (RE=Tb, Sm, Dy and Eu) doped Ca₂Pb₃(PO₄)₃Cl phosphors. J. Lumin. **215**, 116645 (2019). https://doi.org/10. 1016/j.jlumin.2019.116645
- C. Sumalatha, R. Doddoji, M. Venkateswarlu, P.R. Rani, K. Swapna, S. Mahamuda, A.S. Rao, White light emission from Dy³⁺-doped ZnO+Bi₂O₃+BaF₂+B2O₃+TeO₂ glasses: structural and spectroscopic properties. Spectro. Acta Part A: Mol. Biomol. Spectrosc. **240**, 118568 (2020). https:// doi.org/10.1016/j.saa.2020.118568
- P.R. Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, Spectroscopic studies of Dy³⁺ ions doped barium lead alumina fluoro borate glasses. J. Alloys Compd. **787**, 503–518 (2019). https://doi.org/10.1016/j. jallcom.2019.02.088
- H. Bouchouicha, G. Panczer, D. De Ligny, Y. Guyot, M.L. Baesso, L.H. Andrade, S.M. Lima, R. Ternane, Synthesis and luminescent properties of Eu³⁺/Eu²⁺ co-doped calcium aluminosilicate glass-ceramics. J. Lumin. 169, 528–533 (2016). https://doi.org/10.1016/j.jlumin.2014.11.054
- A.S. Rao, R.R. Reddy, T.R. Rao, J.L. Rao, Electron paramagnetic resonance and optical absorption spectra of Fe³⁺ ions in alkali cadmium borosulphate glasses. Solid State. Comm. 96, 701–705 (1995). https://doi.org/10.1016/0038-1098(95)00375-4
- B.H. Babu, V.R.K. Kumar, White light generation in Ce³⁺Tb³⁺ Sm³⁺ codoped oxyfluoroborate glasses. J. Lumin 154, 334–338 (2014). https://doi.org/10.1016/j.jlumin. 2014.05.010
- S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. **71**(1), 1–34 (2010). https://doi.org/10.1016/j. mser.2010.07.001
- H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, T. Yoko, Narrow energy gap between triplet and singlet excited states of Sn21 in borate glass. Sci. Rep. 3, 3541 (2013). https://doi.org/10.1038/srep03541
- N. Deopa, S. Saini, S. Kaur, A. Prasad, A.S. Rao, Spectroscopic investigations on Dy³⁺ ions doped zinc lead alumino borate glasses for photonic device applications. J. Rare Earths 37, 52–59 (2019). https://doi.org/10.1016/j.jre.2018.04.013

- N. Deopa, A.S. Rao, S.K. Mahamuda, M. Gupta, M. Jayasimhadri, D. Haranath, G. Vijaya Prakash, Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. J. Alloys Compd. **708**, 911–921 (2017). https://doi.org/10.1016/j.jallcom.2017.03.020
- G. Lakshminarayana, S. Buddhudu, Spectral analysis of Eu³⁺ and Tb³⁺:B₂O₃-ZnO-PbO glasses. Mater. Chem. Phys. **102**, 181-186 (2007). https://doi.org/10.1016/j.match emphys.2006.11.020
- R.J. Amjad, M.R. Dousti, M.R. Sahar, Spectroscopic investigation and Judd-Ofelt analysis of silver nanoparticles embedded Er³⁺-doped tellurite glass. Curr. Appl. Phys. 15, 1–7 (2015). https://doi.org/10.1016/j.cap.2014.10.022
- M. Higuchi, R. Sasaki, J. Takahashi, Float zone growth of Dy:GdVO₄ single crystals for potential use in solid-state yellow lasers. J. Cryst. Growth **311**, 4549–4552 (2009). https://doi.org/10.1016/j.jcrysgro.2009.08.028
- K. Siva Rama Krishnareddy, K. Swapna, S.K. Mahamuda, M. Venkateswarlu, A.S. Rao, G. Vijayaprakash, Investigation on structural and luminescence features of Dy³⁺ ions doped alkaline-earth boro tellurite glasses for optoelectronic devices. Opt. Mater. 85, 200–210 (2018). https:// doi.org/10.1016/j.optmat.2018.08.057
- P. Manasa, C.K. Jayasankar, Spectroscopic assessment of Dy³⁺ ions in lead fluorosilicate glass as a prospective material for solid state yellow laser, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 212, 315–321 (2019). https://doi. org/10.1016/j.saa.2019.01.015
- Q. Luo, X. Qiao, X. Fan, H. Yang, X. Zhang, S. Cui, L. Wang, G. Wang, Luminescence behavior of Ce³⁺ and Dy³⁺ codoped oxyfluoride glasses and glass ceramics containing LaF₃ nanocrystals. J. Appl. Phys. 105(043506), 1–5 (2009). https://doi.org/10.1063/1.30772 66
- N. Deopa, A.S. Rao, Spectroscopic studies of single near ultraviolet pumped Tb³⁺ doped Lithium Lead Alumino Borate glasses for green lasers and tricolour w-LEDs. J. Lumin. **194**, 56–63 (2018). https://doi.org/10.1016/j.jlumin.2017.09.057
- A. Vidhi, Anu, AS Rao, Spectroscopic characterizations of Dy³⁺ ions doped phosphate glasses for epoxy-free white LED applications. Opt. Mater. **132**, 112863 (2022). https:// doi.org/10.1016/j.optmat.2022.112863
- Y. Tayal, A.S. Rao, Spectroscopic analysis of Dy³⁺ ions activated borosilicate glasses for photonic device applications. Opt. Mater. **117**, 111112 (2021). https://doi.org/10. 1016/j.optmat.2021.111112
- Z. Zhu, Y. Zhang, Y. Qiao, H. Liu, D. Liu, Luminescence properties of Ce³⁺/Tb³⁺/Sm³⁺ co-doped CaO–SiO₂–B₂O₃

glasses for white light emitting diodes. J. Lumin. **134**, 724–728 (2013). https://doi.org/10.1016/j.jlumin.2012.07.003

- A. Ravita, P. Prasad, A. Rohilla, A.S. Shandilya, Rao, Photoluminescence and energy transfer studies on Tm³⁺/ Dy³⁺/Eu³⁺doped borosilicate glasses for color tunability and warm white light generation. J. Non-Cryst. Solids 606, 122192 (2023). https://doi.org/10.1016/j.jnoncrysol.2023. 122192
- U. Caldino, A. Speghini, E. Alvarez, S. Berneschi, M. Bettinelli, M. Brenci, G.C. Righini, Spectroscopic characterization and optical waveguide fabrication in Ce³⁺, Tb³⁺ and Ce³⁺/Tb³⁺ doped zinc-sodium-aluminosilicate glasses. Opt. Mater. **33**(12), 1892–1897 (2011). https://doi.org/10. 1016/j.optmat.2011.03.012
- N. Deopa, M.K. Sahu, P.R. Rani, R. Punia, A.S. Rao, Realization of warm white light and energy transfer studies of Dy³⁺/Eu³⁺ co-doped Li₂O-PbO-Al₂O₃-B₂O₃ glasses for lighting applications. J. Lumin. **222**, 117166 (2020). https://doi.org/10.1016/j.jlumin.2020.117166
- G. Lakshminarayana, H.C. Yang, J.R. Qiu, White light emission from Tm³⁺/Dy³⁺ co-doped oxyfluoride germanate glasses under UV light excitation. J. Solid State Chem. 182, 669–676 (2009). https://doi.org/10.1016/j.jssc.2008.11.020
- E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/147864370082210 61
- A. Agarwal, V.P. Seth, S. Sanghi, P. Gahlot, D.R. Goyal, Optical band gap studies and estimation of two photon absorption coefficient in alkali bismuth borate glasses. Radiat. Eff. Defects Solids 158, 793–801 (2003). https:// doi.org/10.1080/10420150310001618214
- P. Borisut, S. Insiripong, P. Limkitjaroenporn, P. Meejitpaisan, E. Kaewnuam, W. Chaipaksa, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, Luminescence and Judd-Ofelt analysis of gallium aluminum gadolinium yttrium borate scintillating glass doped with Dy³⁺. Radiat. Phys. Chem. **199**, 110284 (2022). https://doi.org/10.1016/j.radphyschem. 2022.110284
- A.R. Venugopal, R. Rajaramakrishna, K.M. Rajashekara, J. Rajaguguk, N.H. Ayachit, S. Kothan, J. Kaewkhao, Dy³⁺ doped B₂O₃ – Li₂O – CaO – CaF₂ glass for efficient white light emitting sources. J. Non-Cryst. Solids 554, 120604 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120604
- 33. N. Wantana, Y. Ruangtaweep, E. Kaewnuam, S.C. Kang, H.J. Kim, S. Kothan, J. Kaewkhao, Development of WO₃-Gd₂O₃- B₂O₃ high density glasses doped with Dy³⁺ for photonics and scintillation materials application.

Solid State Sci. **101**, 106135 (2020). https://doi.org/10. 1016/j.solidstatesciences.2020.106135

- K. Maheshwari, A.S. Rao, Photoluminescence downshifting studies of thermally stable Dy³⁺ ions doped phosphate glasses for photonic device applications. Opt. Mater. **129**, 112518 (2022). https://doi.org/10.1016/j.optmat.2022. 112518
- M. Seshadri, M.J.V. Bell, V. Anjos, Y. Messaddeq, Influence of silver ions in Eu³⁺ doped glass for efficient reddishorange and white light generation. J. Alloy. Compd. 838, 155548 (2020). https://doi.org/10.1016/j.jallcom.2020. 155548
- D. Rajesh, K. Brahmachary, Y.C. Ratnakaram, N. Kiran, A.P. Baker, G.G. Wang, Energy transfer based emission analysis of Dy³⁺/Eu³⁺ co-doped ZANP glasses for white LED applications. J. Alloys Compd. 646, 1096–1103 (2015). https://doi.org/10.1016/j.jallcom.2015.05.138
- D.A. Rodríguez-Carvajal, A.N. Meza-Rocha, U. Caldino, R. Lozada-Morales, E. Alvarez, Reddish-orange, neutral and warm white emissions in Eu³⁺, Dy³⁺ and Dy³⁺/Eu³⁺ doped CdO-GeO₂-TeO₂ glasses. Ma. Solid State Sci. 61, 70–76 (2016). https://doi.org/10.1016/j.solidstatesciences. 2016.09.009
- T.A. Lodi, M. Sandrini, A.N. Medina, M.J. Barboza, F. Pedrochi, A. Steimacher, Dy: Eu doped CaBAl glasses for white light applications. Opt. Mater. 76, 231–236 (2018). https://doi.org/10.1016/j.optmat.2017.12.043
- Y. Tayal, A.S. Rao, S. Kaur, Photoluminescence characteristics of Sm³⁺/Eu³⁺ co-doped LPZABS glasses for solar cell applications. Solid State Sci. **125**, 106834 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106834
- 40. K. Li, X. Liu, Y. Zhang, X. Li, H. Lian, J. Lin, Host-sensitized luminescence properties in CaNb₂O₆:Ln³⁺ (Ln³⁺ = Eu³⁺/Tb³⁺/Dy³⁺/Sm³⁺) phosphors with abundant colors. Inorg. Chem. 54(1), 323–333 (2015). https://doi.org/10.1021/ic502493c
- F. Kang, Y. Zhang, M. Peng, Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-Type Y₂SiO₅:Eu³⁺, Bi³⁺ phosphor for ultraviolet converted LEDs. Inorg. Chem. 54, 1462–1473 (2015). https://doi.org/10.1021/ic502439k
- L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratnam, K. Jang, A.S. Rao, R.K. Sinha, White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121–127 (2016). https://doi.org/10.1016/j.jlumin.2015.08.063
- 43. X. Min, Z. Huang, M. Fang, Y. Liu, C. Tang, X. Wu, Energy transfer from Sm³⁺ to Eu³⁺ in red-emitting phosphor LaMgAl₁₁O₁₉:Sm³⁺, Eu³⁺ for solar cells and

near-ultraviolet white light-emitting diodes. Inorg. Chem. **53**, 6060–6065 (2014). https://doi.org/10.1021/ic500412r

- S. Kaur, N. Deopa, A. Prasad, R. Bajaj, A.S. Rao, Intense green emission from Tb³⁺ ions doped zinc lead alumino borate glasses for laser and w-LED applications. Opt. Mater. 84, 318–323 (2018). https://doi.org/10.1016/j.optmat.2018.07.020
- C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211
- P. Li, M. Peng, X. Yin, Z. Ma, G. Dong, Q. Zhang, J. Qiu, Temperature dependent red luminescence from a distorted Mn⁴⁺ site in CaAl₄O₇:Mn4+. Express. **21**, 18943–18948 (2013). https://doi.org/10.1364/OE.21.018943

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.